

Nutrition and Bone: Beyond Calcium and Vitamin D

Speaker: Dr. Sandra Iuliano

University of Melbourne (Australia)

Moderator: Prof. Belinda Beck

Griffith University (Australia)

Moderator Introduction

Prof. Belinda Beck

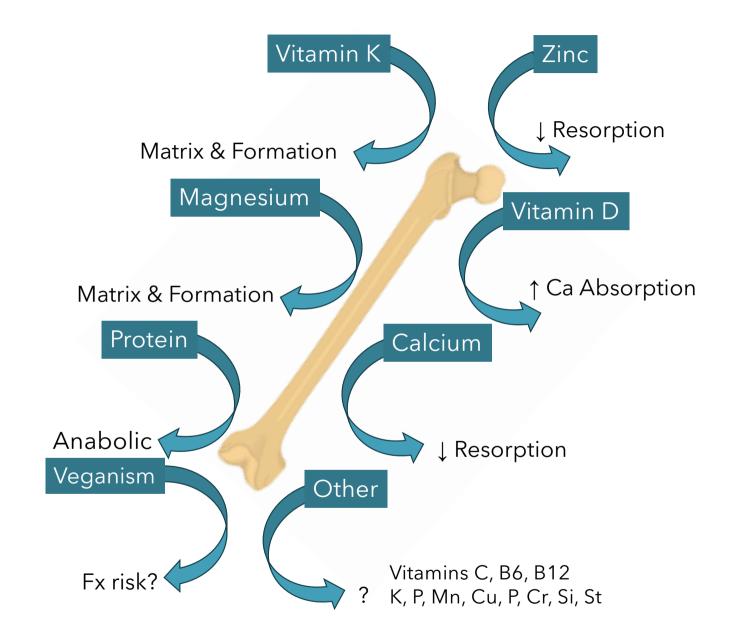
- *Belinda Beck is a Professor in the School of Health Sciences & Social Work at Griffith University's Gold Coast campus and a member of the Menzies Health Institute Queensland. She specializes in musculoskeletal anatomy and bone research, focusing on the effects of mechanical loading on bone.
- ❖ Dr. Beck has secured over \$3 million in research funding, authored 100+ scientific papers, and led the LIFTMOR clinical trials, establishing exercise as a therapy for osteoporosis. In 2015, she founded The Bone Clinic to implement her research findings through the ONERO program.
- She serves on multiple advisory committees, including the Medical and Scientific Advisory Committee of Healthy Bones Australia, and is a member of the Capture the Fracture® Governance.

Speaker Introduction

Dr. Sandra Iuliano

- Dr. Sandra Iuliano is a senior research fellow in the department of medicine, University of Melbourne, researching nutrition and exercise across the lifespan; specifically, to improve musculoskeletal health.
- Relative to aging, her work focused on food-based approaches to prevent falls, fractures, and malnutrition in older adults in aged-care.
- She provided input into the quality and safety standards for aged care, was summoned to present evidence at the Royal Commission in aged-care and is a member of the National Aged-Care Advisory Council.

Bone & Nutrition


Beyond Calcium & Vitamin D

Dr Sandra Iuliano (PhD)

Department of Medicine
University of Melbourne / Austin Health

Bone and Nutrition Beyond Calcium & Vitamin D

© Sandra Iuliano

Nutrition Topics Covered

Vitamin K

Magnesium

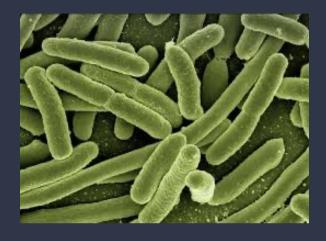
Zinc

Veganism

Dietary patterns

Dietary sustainability & Bone

Other



?

Learning Outcomes

- Understand the primary food sources for bone related nutrients.
- Learn how to interpret food / nutrition research outcomes relative to bone.
- Recognise the types of dietary patterns that support bone health.
- Know the nutritional needs of older adults relative to bone and recognize their nutritional challenges and barriers to optimize bone health.
- Conclude if bone health can be achieved through food in an environmentally sustainable way.

Vitamin K and Bone

Vitamin K & Bone

Two forms Vit K1 phylloquinone Green leafy vegetables

Vit K2 menaquinone Bacteria

Vitamin K - co-enzyme

Deficiency

- carboxylation of osteocalcin

- 个 osteoblast activity

- ↓ osteoclast genesis

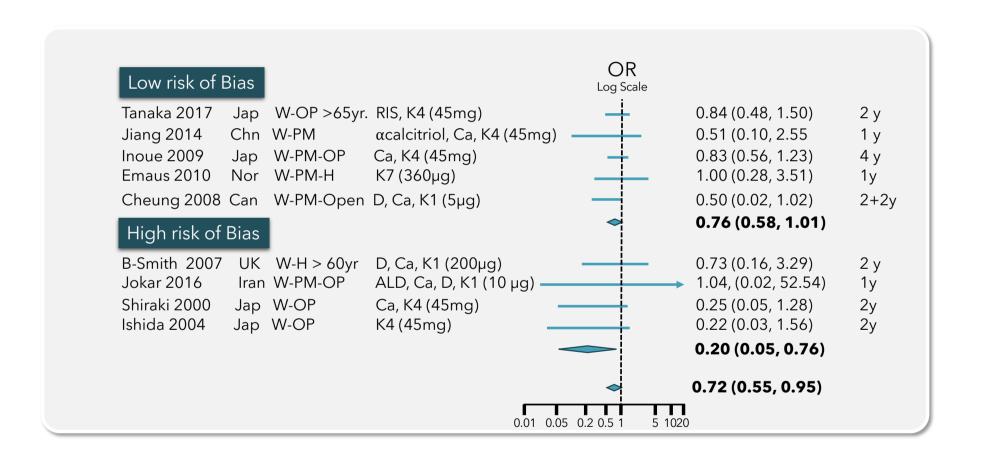
Malabsorption e.g., cystic fibrosis, celiac disease, ulcerative colitis, short bowel syndrome, etc

Interactions with medications

- Anti-coagulants (e.g., warfarin) consistent intake
- Anti-biotics: may destroy K-producing bacteria
- Bile acid sequestrants: ↓ absorption of fat-soluble vitamins
- Weight loss medications e.g., Orlistat: ↓ absorption

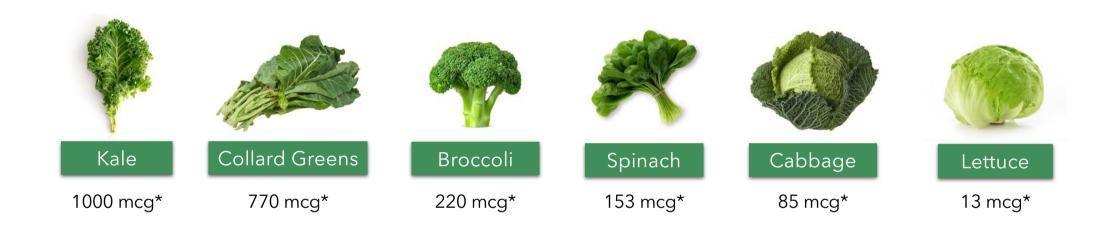
Measurement Time to blood clot

Rare


Trials Often administered with other nutrients (Ca, VitD)

Various forms & doses of Vitamin K (1, 4, 7)

Cross section Serum (difficult to measure) v intake (FFQ, record, recall) + microbial production


© Sandra Iuliano Alonso et al. CTI, 2023

Vitamin K Supplementation & Fractures

© Sandra Iuliano Mott et al, Osteoporosis Int 2019

Dietary Sources of Vitamin K

Recommended intake: Older adults 60–70 mcg / day (Aust)

One cup of most green leafy vegetables per day would meet vitamin K needs

*Content per cup

Magnesium and Bone

Magnesium & Bone

Location 50-60% present in bone

< 1% in serum (tightly regulated)

Magnesium - co-factor in 300+ enzyme

- synthesis of bone matrix

- ↑ osteoblast proliferation

Deficiency Difficult to determine

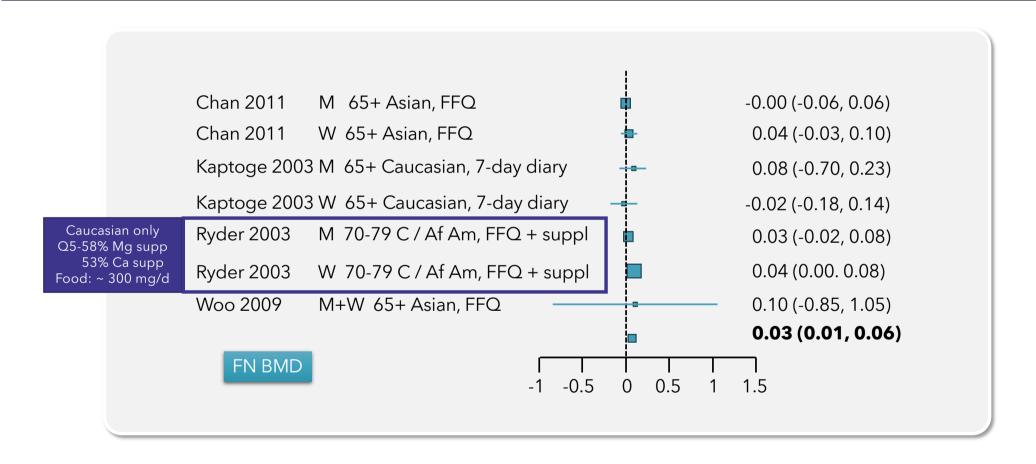
Often occurs with other nutrients

Measurement Serum

Trials Limited Supplementation studies in post-menopausal women: decrease PTH

Cross section Correlations between low serum Mg & BMD / Fx risk (mostly post-menopausal women)

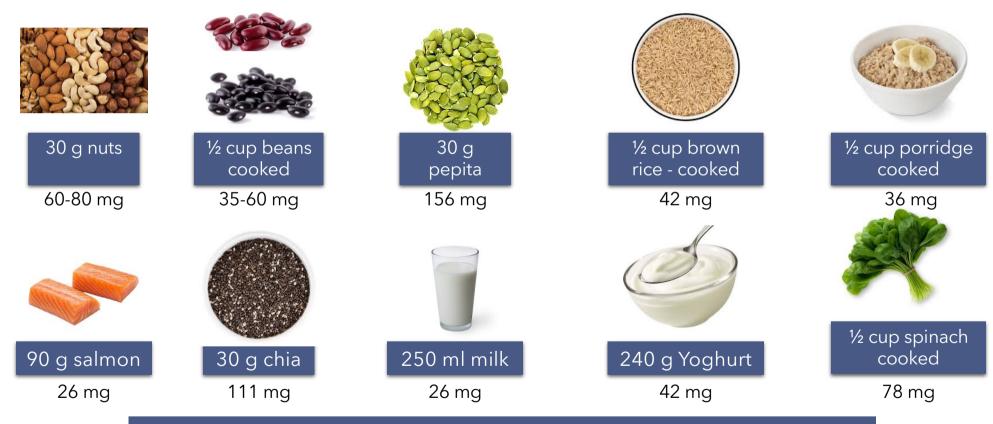
Other nutrients are also lower



CKD Patients
Specific considerations
may assist with mineral
metabolism

Magnesium & BMD in Older Adults

© Sandra Iuliano Groenendijk et al. Bone, 2022


Magnesium & BMD in Older Adults

Ryder et al. JAGS, 2005

Food per 1000 kcal	Quintile 1	Quintile 5*
Fat (g)	41 ± 7	32 ± 9
Protein (g)	32 ± 7	40 ± 8
Carbohydrates (g)	125 ± 21	142 ± 22
Magnesium (mg)	116 ± 12	208 ± 32
Calcium (mg)	322 ± 96	541 ± 201
Vitamin D (IU)	85 ± 44	146 ± 86
Potassium (mg)	1211 ± 188	1992 ± 383
Vitamin C (mg)	63 ± 31	99 ± 44
F&V Fibre (g)	3 ± 1	6 ± 3
Mg supplement (%)	1.5	57.7
Ca supplement (%)	11.3	53.3

Higher intake of numerous macro- & micro-nutrients

Dietary Sources of Magnesium

Recommended intake: Older women 320 mg; men 420 mg / day (Aust)

Zinc and Bone

Zinc & Bone

Location ~30% present in bone

Zinc - Osteoblast differentiation

- ↓ Resorption

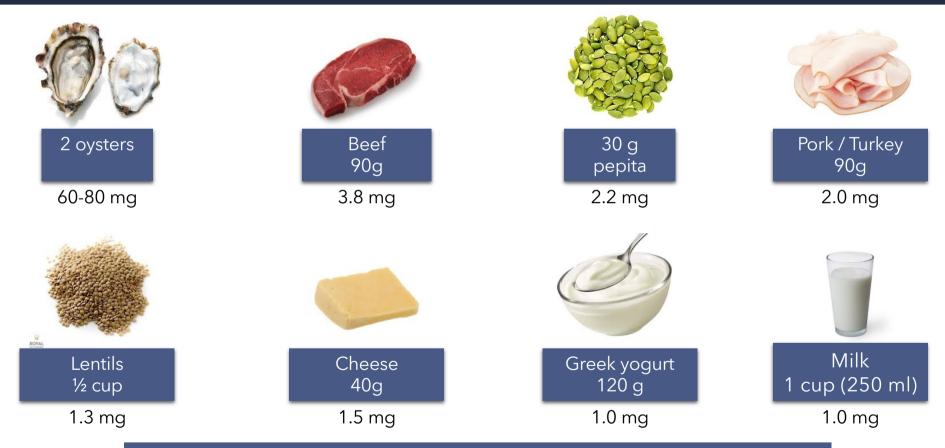
- ↑ Osteoclast apoptosis

Deficiency Older adults: Delayed wound healing

Cognitive & Psychological function

Measurement Serum (affected by age, sex, time of blood draw)

Trials Most case-controls


Cross section Dietary & serum levels

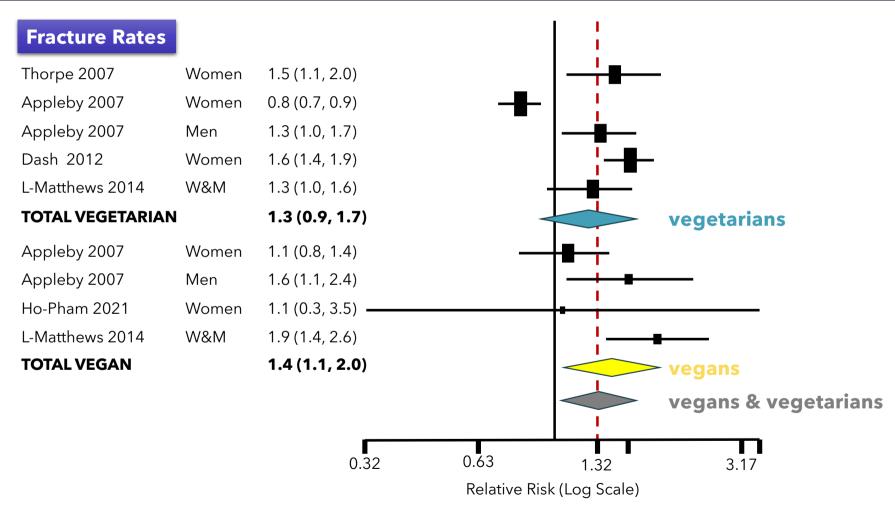
Consider weight loss, chronic alcohol use, malabsorptive digestive diseases

Zinc & Bone in Older Adults

Group	Serum levels	Р	Dietary intake	Р
All - osteoporotic, osteopenic, post-menopausal, fractures	-3.2 (-7.1, 0.6)	.10	-0.3 (-0.8, 0.1)	.15
,	N=24		N=15	
Osteoporosis	-12.7 (-19.3, - 6.1)	.00	-0.01 (-1.6, 1.6)	.99
	N=12, Low evidence		N=4, Mod	
Osteopenia	-8.3 (-19.3, 2.7) N=4 High	.14	-0.3 (-2.9, 3.4) N=2 High	.88
Post-menopausal women	-6.8 (-17.6, 4.0)	.22	-0.4 (-1.6, 0.7)	.49
	N=17, High		N=6, High	
Fractures	No data		-0.5 (-0.9, -0.1) PRO -0.4 (-7.5, -0.6) N=4, Low evidence	.02 .02

Dietary Sources of Zinc

Recommended intake: Older women 8 mg; men 14 mg / day (Aust)



Veganism and Bone

Is Veganism Aligned with Bone Health?

What Happens When Animal-Based Proteins are Excluded

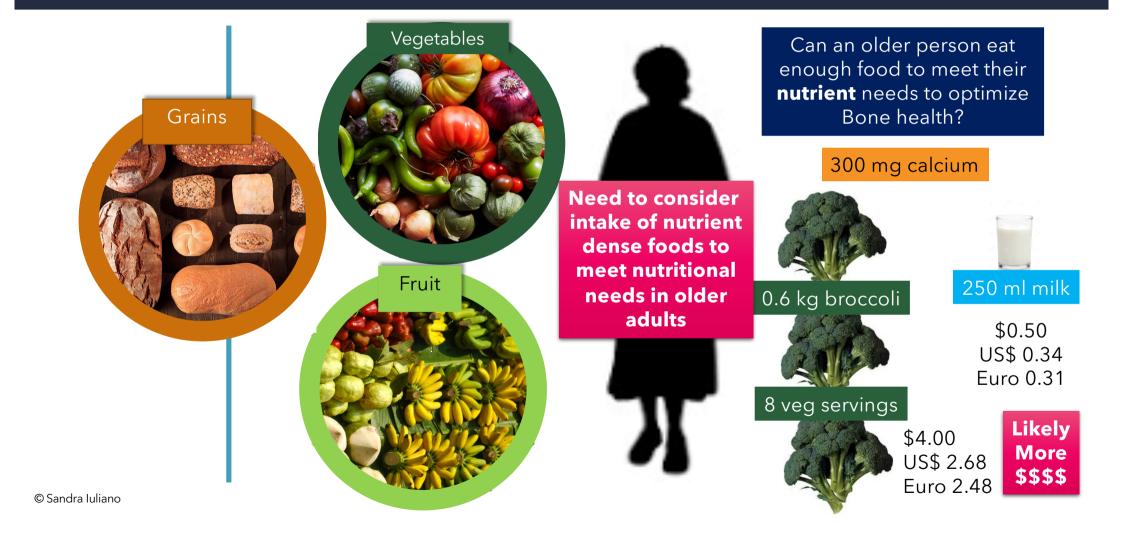
© Sandra Iuliano

Plant-based Proteins

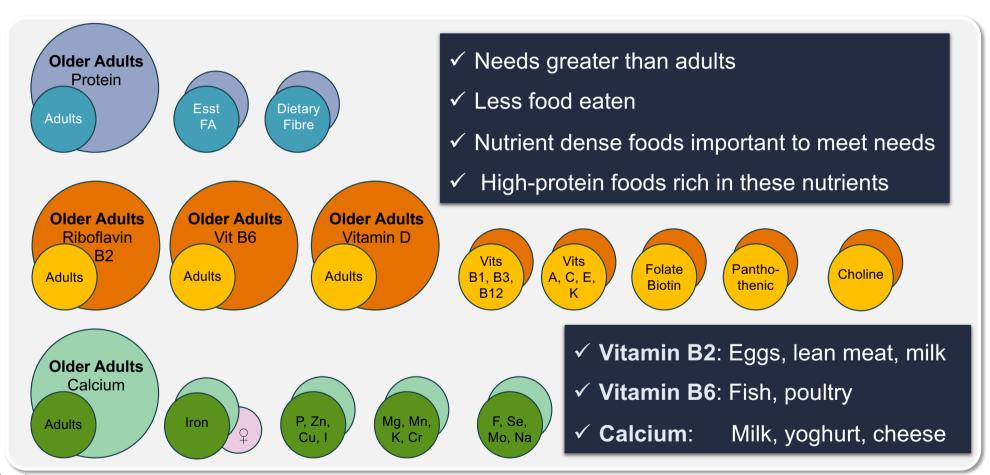
Grains

3-5 servings

Animal-based Proteins



3-4 servings



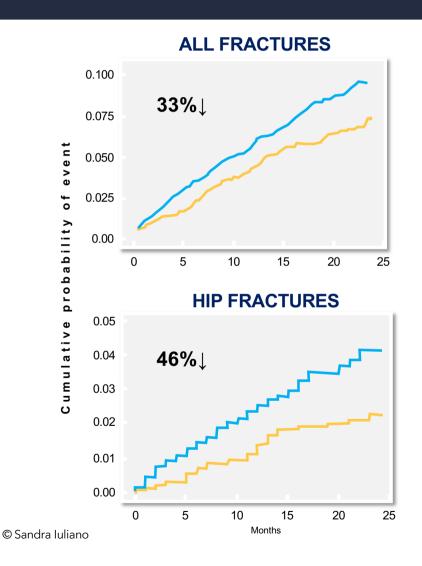
Australian Guide to Healthy Eating

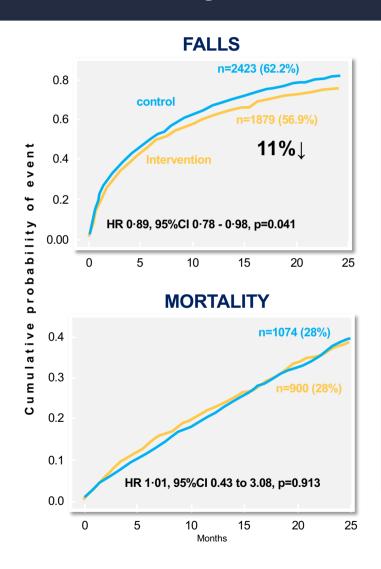
What Happens When Animal-Based Proteins are Excluded

Nutrient Requirements of Older Adults (>70 years of age)

© Sandra Iuliano

Dietary Patterns and Bone


Dietary Patterns and Hip Fracture Risk


Study	Sample	Healthy Diet	Other diet	RR / OR
Warensjo 2017	Women 56,000+	Fish, wholegrains, eggs, poultry, pasta, rice Fruit & Veg,	Western / convenience : sweet & savoury snacks, meat, jam, white	Healthy 0.84 (0.81, 0.86)
Sweden	> 50yo	fermented milk Q1-4	bread, sodas, bakery products	Western 1.06 (1.03, 1.09)
Zeng, 2013 China	Case - Control	Freshwater fish, fruit & veg T1 - 3	High fat : red meat, poultry with skin, organ meat,	Healthy 0.42 (0.24, 0.73)
			, 3	High fat 2.25 (1.38, 3.69)
Dai 2014 Singapore	W&M 63,000+	Fruit, veg, soy, legumes	Meat-dim sim : meat, refined starches	Healthy : 0.7 (0.6, 0.8)
Chinese	·			Other : 1.2 (1.0, 1.4)
Fung 2015 USA	W&M 100,000+	Prudent: Fruit & Veg, wholegrains, poultry, low fat	Western : red & processed meat, refined grains, sweets, high fat	Prudent : 1.1 (1.0, 1.4)
		dairy Q1 - 5	dairy*	Western : 1.1 (0.9, 1.3)
	N	ot comparing	Highest level Lowest level Risk Ratio Risk Ratio tudy or Subgroup Events Total Events Total Weight MH, Random, 95% CI MH, Random, 95% CI	

Not comparing similar diets

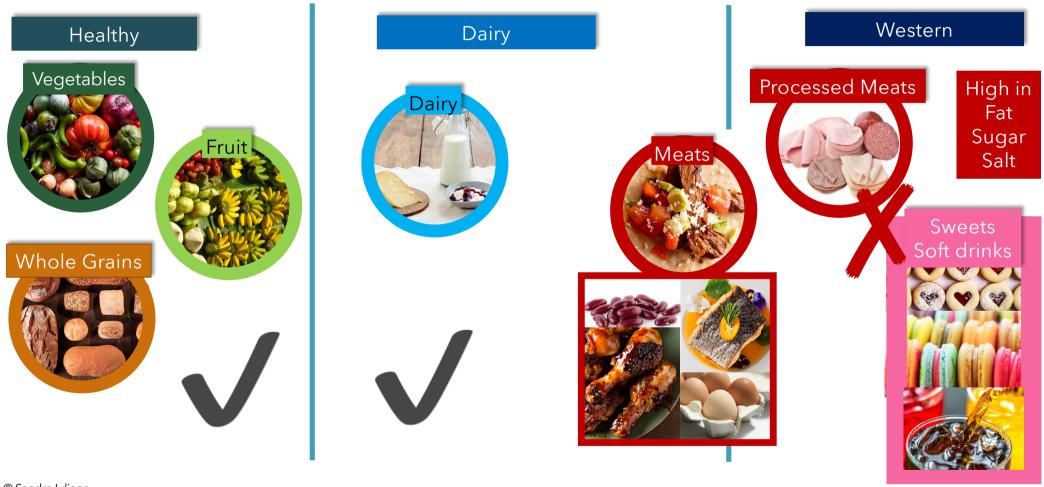
High fat dairy*
Includes
butter, cream, ice-cream

Fracture Prevention & Dairy Consumption

Milk, Yoghurt & Cheese 3.5 servings daily

Milk: 250 ml

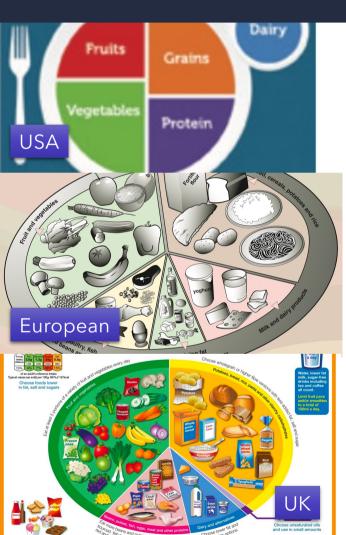
Cheese: 40 g


Yoghurt: 200 g

Skim milk powder

7000+ older adults 60 aged care homes

Iuliano et al. BMJ, 2021


Which Dietary Patterns are Associated with Good Bone Health?

© Sandra Iuliano

Dietary Recommendations & Bone Health

Principles of Sustainable Eating

Principles of Sustainable Eating

GUIDING PRINCIPLES FOR SUSTAINABLE HEALTHY DIETS

¹⁰ Food processing can be beneficial for the promotion of high quality diets: If can make food more available as well as sale. However, Some forms of processing can lead to very high densities of sail, added sugar and saturated tats and these products, when consumed in high amounts, can undermine diet quality. (Global Panel on Agriculture and Food Systems for Nutrition. 2016. Food systems and diets: Facing the challenges of the 21st century. London, UK. http://ebrary.itpsi.org/utils/ gettle/collection/p15738col5/id/5516/filename/5517.pdf)

Carbon

Land use

Water use

¹² They include up to 30-35 percent of total energy intake from fats, with a shift in fat consumption away from may include up to 2000 bettern or notice relative indicate including this arm in all consultation and solutioned falls to unsolutioned that solutioned falls to unsolutioned that solution are solven in the solution of the supers (possibly less than 5 peccent) and mane han 5 g per day of sol (to be locked). WMB. 2018. Healthy diet. WhO fact sheet No. 394 (updated August 2018), Genevo, World Health Grigorication, 2018.

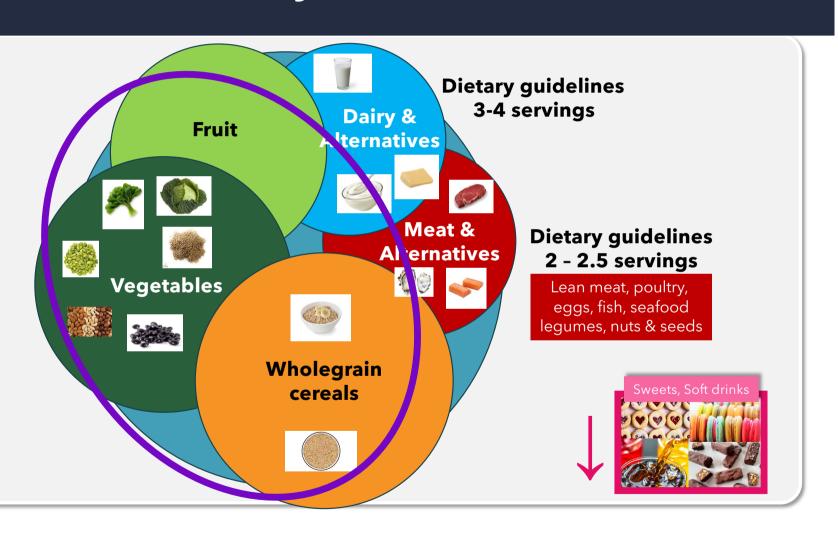
Greenhouse Gas Emissions & Food Consumption

Nutrition & Bone: What does the Evidence Say?

Nutrition	Evidence	Dietary factors
Vitamin K	Inconclusive	Green leafy vegetables (GL veg)
Magnesium	Inconclusive	Nuts, seeds, lentils, wholegrain, GL veg, milk, yoghurt, salmon
Zinc	Osteoporotic (low level evidence)	Seafood, milk, yoghurt, cheese, lean beef, seeds, lentils
Veganism	Low-moderate	Likely not suitability for older adults
Dietary patterns	Moderate - strong	F&V, wholegrain, dairy, fish, egg, poultry, lean meat, nuts, seeds, legumes
Sustainability	Moderate	Limiting discretionary foods has greater benefit than removing dairy for CO2

Nutrition & Bone: Beyond Calcium and D

Vitamin K


Magnesium

Zinc

Vegetarian

'Healthy' diet

Sustainability

Nutrition & Bone: Beyond Calcium and D

A dietary pattern that aligns with most dietary guidelines optimizes bone health and can also be sustainable.

Dr. Sandra Iuliano

sandraib@unimelb.edu.au

M: + 61 438 215 615

Q&A

Thank you to our sponsor

Our vision is a world without fragility fractures in which healthy mobility is a reality for all

www.capturethefracture.org